Brand Name	CENTANIN ^{® 1)}					
Material Code						
Abbreviation	CuMn27Ni5					
Chemical Composition (mass components) in %. Average values of alloy components						
Cu 67	Ni 5	Mn 27	AI			

Features and Application Notes

CENTANIN[®] is in the best tradition of Isabellenhütte's precision resistance alloys ZERANIN[®] 30, MANGANIN[®], NOVENTIN[®] and ISAOHM[®]. CENTANIN[®] is especially characterized by a high resistivity and a low temperature coefficient of resistance between +20°C and +60 °C with a parabolic behavior of the R(T) curve. CENTANIN[®] is excellently suitable for the production of standard resistors with a maximum working temperature in air of +140°C. It is also suitable for heating elements with low conductor temperatures up to 300°C in non-oxidizing atmosphere.

Due to its low melting point, CENTANIN[®] is also proved successfully for years in thermal spraying applications, e.g. heating layers and heated surfaces.

Form of Delivery

 $\begin{array}{l} {\sf CENTANIN}^{\circledast} \text{ is supplied in the form of round wires in the range of } \\ 1 \text{ to 6 mm } \varnothing \text{ in bare annealed condition. Also available on request} \\ \text{other Diameters, sheets, ribbons, flat wires, stranded wires and} \\ \text{rods.} \end{array}$

Notes on Treatment

This alloy is in hard drawn condition subject to stress-corrosioncracking and should be annealed immediately after being processed.

Electrical Resistance in Annealed Condition

electrical resistance at	tolerance +10 %		
+20 °C and +50 °C		+20°C	+100 °C
10 ⁻⁶ /K		Nom. value	Reference value
±20	μΩxcm	100	100
	CMF	602	602

Physical Characteristics (Reference Values)

Density at +20 °C	Melting point	Specific heat at +20 °C	Thermal conduc- tivity at +20 °C	Average linear thermal expansion coefficient between +20 °C and		Thermal EMF against copper at	
				+100°C	+400°C	+20°C	
g/cm³	°C	J/g K	W/m K	10⁻⁰/K	10 ⁻⁶ /K	μV/K	
7.8	+900	0.42	-	20	-	≤+3	

Strength Properties at +20 °C in Annealed Condition

Tensile Strength	Elongation ($L_0 = 100 \text{ mm}$) %	at nominal diameter in mr	n	
N/mm ²				
[Min.]	Over 1 min.			
540	25			

1) CENTANIN® is a registered trademark of Isabellenhütte Heusler GmbH & Co. KG.

Precision resistance alloys:

	ZERANIN®30	MANGANIN®	ISOTAN®	ISABELLIN® A	NOVENTIN®	CENTANIN®	ISA0HM®
resistivity [$\mu \Omega^*$ cm]	29	43	49	50	90	100	132
low TCR	•	•	•	${}^{\bullet}$	•	D	٠
low thermal EMF	0	•	0	0	•	0	0
solderability / workability	•	•	•	\bullet	•	${}^{\bullet}$	0
very good good							

good less good

> ISABELLENHÜTTE Innovation by Tradition